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Glioma is the most common type of primary malignant central nervous system (CNS) 
tumor and accounts for approximately 75% of primary malignant CNS tumors (1). De-
spite developments in surgery, chemotherapy, and radiotherapy, patients with glioma 

still suffer an unpleasant prognosis (2). In recent years, increasing attention has been given 
to molecular markers in patients with glioma. O6-methylguanine-DNA methyltransferase 
(MGMT) is a key gene that encodes a DNA repair enzyme. The methylated MGMT promoter is 
usually related to better overall survival in temozolomide (TMZ)-treated gliomas (3–5). In ad-
dition, the MGMT gene is a potential attractive therapeutic target in the molecularly targeted 
therapy field (6, 7). Moreover, it has been reported that MGMT promoter methylation status is 
significantly associated with glioma pseudo-progression in recent studies (8, 9).

At present, the approaches for determining MGMT promoter methylation status in gli-
oma are based on surgical sampling (10), which is an invasive procedure and may induce 
severe complications. The results always take a relatively long period, which may delay 
important therapeutic decisions and be influenced by intra-tumoral heterogeneity. Thus, 
identifying a noninvasive, preoperative, and robust means to detect MGMT promoter status 
is of great significance. Radiomics, which is an advanced imaging analysis technique, utiliz-
es algorithms to automatically extract a large number of data features to convert imaging 
data into a high-dimensional and mineable feature space (11). Machine learning algorithms 
have been used to create credible statistical models for classification in radiomics (12), and 

PURPOSE 
We aimed to assess the diagnostic performance of radiomics using machine learning algorithms 
to predict the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) pro-
moter in glioma patients.

METHODS
A comprehensive literature search of PubMed, EMBASE, and Web of Science until 27 July 2021 
was performed to identify eligible studies. Stata SE 15.0 and Meta-Disc 1.4 were used for data 
analysis.

RESULTS
A total of 15 studies with 1663 patients were included: 5 studies with training and validation co-
horts and 10 with only training cohorts. The pooled sensitivity and specificity of machine learn-
ing for predicting MGMT promoter methylation in gliomas were 85% (95% CI 79%–90%) and 
84% (95% CI 78%–88%) in the training cohort (n=15) and 84% (95% CI 70%–92%) and 78% (95% 
CI 63%–88%) in the validation cohort (n=5). The AUC was 0.91 (95% CI 0.88–0.93) in the training 
cohort and 0.88 (95% CI 0.85–0.91) in the validation cohort. The meta-regression demonstrated 
that magnetic resonance imaging sequences were related to heterogeneity. The sensitivity anal-
ysis showed that heterogeneity was reduced by excluding one study with the lowest diagnostic 
performance. 

CONCLUSION
This meta-analysis demonstrated that machine learning is a promising, reliable and repeatable 
candidate method for predicting MGMT promoter methylation status in glioma and showed a 
higher performance than non-machine learning methods.
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they have already had a powerful influ-
ence on radiology practice and could fur-
ther change the area of radiology (13–15). 
For the CNS, magnetic resonance imaging 
(MRI) is the most common and noninvasive 
preoperative diagnostic imaging method. 
Increasing evidence in neuro-oncology has 
indicated that radiomics features based on 
MRI can predict the molecular subtype of 
glioma (16–18).

 In recent years, a few studies have 
demonstrated that machine learning per-
forms well in predicting MGMT promoter 
methylation status in glioma (16, 18–22). 
However, to our knowledge, no study has 
performed a systematic assessment of the 
diagnostic accuracy of machine learning 
for predicting MGMT promoter methyla-
tion status. Thus, our meta-analysis aimed 
to systematically evaluate the diagnostic 
efficacy of machine learning for predicting 
MGMT promoter methylation status in pa-
tients with glioma.

Methods
The present meta-analysis was conduct-

ed following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (23).

Literature search
A comprehensive literature search of 

PubMed, EMBASE, and Web of Science 
from 1 January 2000 to 27 July 2021 was 
performed to identify related eligible 
studies. The specific search strategy com-
bining the following keywords was used: 
((Radiomics) OR (machine learning) OR 
(deep learning) OR (neural network) OR 
(radiomics nomogram) OR (Algorithms) 
OR (Artificial Intelligence) OR (comput-
er-assisted diagnosis) OR (texture anal-
ysis)) AND ((glioma) OR (glioblastoma) 

OR (astrocytoma) OR (astroglioma) OR 
(oligodendroglia)) AND ((O6-methylgua-
nine-DNA-methyltransferase) OR (MGMT) 
OR (methylguanine-DNA methyltransfer-
ase)). In addition, the reference lists of the 
included original articles and relevant pa-
pers were manually reviewed for studies 
that were not found during the database 
searches. The literature search had no lan-
guage or date limitations.

Inclusion criteria
Studies were considered on the basis of 

the following criteria: 1) patients with grade 
II, III or IV gliomas confirmed by histopatho-
logical analysis; 2) methylation-specific 
polymerase chain reaction used as the ref-
erence standard to identify MGMT promot-
er methylation status; 3) machine learning 
used to predict the MGMT promoter status; 
and 4) true-positive (TP), false-positive (FP), 
false-negative (FN), and true-negative (TN) 
values available from the original studies to 
generate 2 × 2 tables for determining the 
diagnostic efficacy of machine learning in 
prediction of MGMT promoter status.

Exclusion criteria
Studies were excluded if they 1) were 

conference abstracts, reviews, letters, com-
ments or case reports/case series involving 
<10 patients; 2) were not focusing on the 
diagnostic efficacy of machine learning 
for predicting the MGMT promoter even 
though machine learning was used to clas-
sify the MGMT promoter status; and 3) in-
cluded overlapping patient cohorts.

Data extraction and quality assessment
We extracted the following data from 

the included studies: sample size, number 
of patients in the training and validation 
cohorts, number of patients with MGMT 
promoter methylation, World Health Orga-
nization (WHO) grade of glioma, mean age, 
male/female ratio, authors, year of publi-
cation, patient recruitment period, study 
design, MRI field strength (T) and scanning 
sequence, model methods, and method of 
region-of-interest (ROI) delineation. These 
data were independently extracted by two 
investigators, and any disagreements were 
resolved by discussion.

The Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) (24) was 
applied to assess the quality of the included 
studies. Domains including patient selec-
tion, index test, reference standards, flow 
and timing were evaluated:

Statistical analysis
All statistical analyses were performed by 

using Stata SE 15.0 and Meta-Disc 1.4. For 
each study, 2×2 tables were reconstructed 
to calculate the pooled sensitivity, specific-
ity, positive likelihood ratio (PLR), negative 
likelihood ratio (NLR), and diagnostic odds 
ratio (DOR). A bivariate random effect mod-
el was used to calculate the pooled sensitiv-
ity, specificity, PLR, NLR, DOR and their 95% 
confidence intervals (95% CIs). An integrat-
ed hierarchical summary receiver operating 
characteristic (HSROC) plot and the curve 
area under the HSROC curve (AUC) were 
used to evaluate the diagnostic perfor-
mance of machine learning for predicting 
MGMT promoter methylation status.

Heterogeneity was evaluated according 
to the following means: (1) Cochran’s Q 
test, with p > 0.1 suggesting no heteroge-
neity; (2) Higgins inconsistency index (I2) 
test with a value >50% suggesting sub-
stantial heterogeneity; (3) visual assess-
ment of the difference between the 95% 
confidence region in the HSROC curve; 
and (4) a Spearman correlation coefficient 
>0.6 suggesting the presence of a thresh-
old effect. Publication bias was evaluated 
by using Deeks’ funnel plot asymmetry 
test, and a p < 0.05 showed potential pub-
lication bias.

Furthermore, we performed a subgroup 
analysis of the included studies with train-
ing cohorts to explain the reasons for het-
erogeneity. The covariates that were cov-
ered were as follows: 1) MRI field strength; 
2) glioma grade; 3) number of patients in 
the training cohort; 4) MRI sequences; 5) 
publication year; and 6) blinding of MRI 
readers to the reference standard.

Results
A total of 456 studies were initially con-

firmed using the above-described search 
strategies. Ultimately, according to the 
inclusion criteria, 15 original articles (16, 
19–22, 25–34) with 1663 patients were in-
volved in this meta-analysis. Among these 
included studies, 10 studies included only 
training cohorts (16, 25–28, 30–34), and the 
other 5 studies included training and vali-
dation cohorts (19–22, 29). The number of 
patients were 1432 and 231 in the training 
and validation cohorts, respectively.

All the included studies were retrospec-
tive cohort studies. Seven of the 15 studies 
used 3T MRI (16, 19–22, 26, 30, 31), 2 studies 
used 1.5T or 3T MRI (28, 32), and 4 studies did 

Main points

•	 This meta-analysis demonstrated that ma-
chine learning is a promising, reliable, and re-
peatable candidate method for predicting the 
methylation status of the MGMT promoter.

•	 Machine learning utilizing conventional MRI 
sequences showed a higher diagnostic per-
formance than advanced MRI sequences in 
predicting MGMT promoter methylation sta-
tus.

•	 Our results revealed that machine learning 
has a relatively higher performance than 
non-machine learning methods. 



not report the MRI strength (26, 29, 33, 34).  
Regarding the MRI sequences, 8 studies uti-
lized conventional MRI sequences, namely 
T1-weighted imaging, T2-weighted im-
aging (T2WI), fluid-attenuated inversion 
recovery, and contrast-enhanced (19–22, 
28, 29, 33, 34), and the remaining 7 stud-
ies utilized advanced sequences, namely 
diffusion-weighted imaging, dynamic sus-
ceptibility contrast, diffusion tensor imag-
ing, susceptibility-weighted imaging (SWI), 
resting-state functional MRI, inflow-based 
vascular space occupancy (16, 20, 25, 27, 
30–32) in addition to  conventional MRI se-

quences. Seven studies included patients 
with grade IV gliomas (19, 21, 22, 26–29), 
1 study included patients with grades III 
and IV gliomas (25), 6 studies included pa-
tients with gliomas of grades II, III and IV 
(20, 30–34), and 1 study included patients 
with gliomas of grades II and III (16). Seven 
of 9 studies were published before 2019 
(19, 20, 22, 25–28), and the other 8 studies 
were published after 2019 (16, 21, 29–34). 
Only 1 of 15 studies used ROI measurement 
and tumor segmentation to delineate ROIs 
(16), and the remaining 14 studies used 
tumor segmentation (19–22, 25–34). Var-

ious machine-learning models were used 
in all included studies, including multilabel 
nonlinear matrix completion (MNMC), deep 
learning, decision tree (DT), naive Bayes 
(NB), multilayer perceptron (MLP), support 
vector machine (SVM), lasso and elastic net 
regularized generalized linear model (GLM-
NET), random forest (RF), k-nearest neigh-
bors (KNN), stochastic gradient boosting 
machines (sGBM), and eXtreme gradient 
boosting (XGBoost). The process of the lit-
erature selection is shown in Fig. 1. The pa-
tient and study characteristics are shown in 
Table 1.
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Figure 1. Flow diagram of the literature selection process.
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The results of the quality assessment of 
the included studies using the QUADAS-2 
assessment checklist are described in Fig. 2.

Our sample sizes contained 15 studies 
assessing the diagnostic performance of 
machine learning for predicting MGMT 
promoter status in patients with glioma. 
The sensitivity of the individual included 
studies ranged from 57% to 96% and 70% 
to 94% in the training cohort and validation 
cohort, respectively. The specificity of the 
individual included studies ranged from 
65% to 96% and 54% to 88% in the training 
cohort and validation cohort, respectively. 
The pooled sensitivity and specificity of 
machine learning for predicting MGMT pro-
moter methylation in the training cohorts 
(n=15) were 85% (95% CI 79%–90%) and 
84% (95% CI 78%–88%), respectively (Fig. 
3). The pooled PLR, NLR, and DOR were 5.3 
(95% CI 3.7–7.6), 0.18 (95% CI 0.12–0.26), 
and 30 (95% CI 14–62), respectively. The 
AUC was 0.91 (95% CI 0.88–0.93, standard 
error (SE)=0.024, p  <  0.001) (Fig. 4). In the 
validation cohort (n=4), the pooled sensitiv-
ity, specificity, PLR, NLR, and DOR were 84% 
(95% CI 70%–92%), 78% (95% CI 63%–88%), 
3.8 (95% CI 2.2–6.6), 0.21 (95% CI 0.11–0.38), 
and 18 (95% CI 8–43), respectively. The 
AUC was 0.88 (95%CI 0.85–0.91, SE=0.033, 
p < 0.001).

Cochran’s Q test demonstrated that het-
erogeneity was absent (Q=0.20, p  =  0.45) 
in all included studies, but substantial het-
erogeneity in the sensitivity (I2=81.22%, 
p  <  0.001) and specificity (I2=79.66%, 
p < 0.001) was measured by the Higgins I2 
statistic. The Spearman correlation coeffi-
cient was -0.618 (p = 0.014), indicating the 
absence of a threshold effect. The likelihood 
of publication bias was low (p = 0.89; Fig. 5), 
as demonstrated by Deeks’ funnel plot.

A meta-regression was conducted to 
explore the source of the heterogeneity. 
Among the covariates, MRI sequences were 
associated with heterogeneity. Magnetic 
field strength, glioma grade, and blinding 
of MRI readers to the reference standard 
were not demonstrated to be significant 
causes influencing the heterogeneity.

The sample sizes of the validation cohort 
were inadequate to make credible conclu-
sions, and we only performed a subgroup 
analysis in the training cohort (Table 2). 
Magnetic field strength, grade, sample size, 
MRI sequences, blinding to the reference 
standard, and publication year influenced 
the diagnostic performance of machine 
learning for predicting MGMT promoter Ta
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methylation status. Studies using conven-
tional MRI sequences showed better diag-
nostic efficacy in predicting MGMT promot-
er methylation with a pooled sensitivity of 
90% and specificity of 86%; however, stud-
ies using conventional and advanced MRI 
sequences had a lower pooled sensitivity of 
73% and specificity of 74%. Studies involv-
ing low-grade glioma had better sensitivity 
(88% vs. 79%) and specificity (85% vs. 79%) 
and a higher diagnostic odds ratio (38 vs. 
20). In our analysis, the studies in which the 
sample size of the training group was more 
than 100 patients had a similar sensitivity 
(84% vs. 85%) and specificity (81% vs. 82%) 
but a slightly lower DOR (24 vs. 28). In ad-
dition, the diagnostic efficacy of machine 
learning also correlated with publication 
year, and studies published after 2019 had 
better values of sensitivity (89% vs. 80%), 
specificity (87% vs. 77%) and DOR (53 vs. 15) 
than studies published before 2019.

In the sensitivity analysis (Supplemen-
tary material 1), the study with the lowest 
diagnostic performance (sensitivity of 57% 
and specificity of 61%) among the includ-
ed studies showed significant influence on 
heterogeneity, when it was removed the 
heterogeneity of sensitivity decreased from 
I² = 81.2% to I² = 64.2%, and specificity de-
creased from I² = 79.6% to I² = 60.2%. 

Discussion
In this meta-analysis, we found that 

machine learning showed high diagnos-
tic efficacy (AUC=0.91) in noninvasively 
predicting MGMT promoter methylation 
status. The summary sensitivity and speci-
ficity were 85% and 84%, respectively. The 
meta-regression demonstrated that MRI 
sequences were associated with heteroge-
neity. The sensitivity analysis showed that 
the study with the lowest diagnostic perfor-
mance among the included studies showed 
significant influence on heterogeneity. 
Moreover, subgroup analysis revealed that 
the diagnostic efficacy of machine learning 
in the prediction of MGMT promoter meth-
ylation status was affected by magnetic 
field strength, glioma grade, blinding of 
MRI readers to the reference standard, num-
ber of training groups, MRI sequences, and 
publication year.

Based on the results of this meta-anal-
ysis, machine learning studies showed a 
relatively higher performance in predicting 
MGMT promoter methylation status than 
that of non-machine learning studies using 
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perfusion sequence studies (the sensitivity 
and specificity ranged from 56.3% to 84.2% 
and 75.0% to 85.7%, respectively; Supple-
mentary material 2) (35–38). Although some 
non-machine learning studies using ADC 
values showed good diagnostic efficacy in 
predicting MGMT promoter methylation sta-
tus (sensitivity 81%–84%, specificity 82%–
91%) (37, 39), the results of non-machine 
learning studies using ADC values remained 
controversial. Han et al. (37) reported that 
the ADC value from diffusion-weighted MRI 
of MGMT methylated glioblastomas was 
higher than that of unmethylated glioblas-
tomas. However, Pope et al. (40) demonstrat-
ed that the ADC value of MGMT-methylat-
ed gliomas was lower than that of gliomas 
without MGMT methylation. In addition, 
a few studies (36, 41, 42) revealed that the 
ADC value was not significantly different be-
tween MGMT methylated and unmethylated 
gliomas. Furthermore, as machine learning 

Figure 4. HSROC curve of the diagnostic efficacy 
of machine learning in the prediction of MGMT 
promoter methylation status in glioma patients.

Figure 5. Deeks’ funnel plots indicated no 
publication bias (p = 0.48).Figure 2. Risk of bias and applicability concerns summary: review of authors' judgements about each 
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machine learning in the prediction of MGMT promoter methylation status.



algorithms become more advanced and we 
learn more about the molecular subgroups 
of glioma, the ability of machine learning to 
predict the methylation status of the MGMT 
promoter has significantly improved. Of the 
included studies, those published in the last 
two years had better diagnostic efficacy than 
those published before that, with a summa-
ry sensitivity of 89%, specificity of 87% and 
AUC of 0.94 (95% CI 0.92–0.96; SE=0.027, 
p < 0.01). The results demonstrated that ma-
chine learning approaches showed a steadi-
er and better diagnostic accuracy than these 
non-machine learning approaches. In addi-
tion, the highly predictive value of machine 
learning methods was also demonstrated 
in identifying other important biomarkers 
of gliomas (43–45). The diagnostic efficacy 
of machine learning would be further im-
proved with increase in training data and 
further development of machine learning al-
gorithms. Based on the results of the present 
meta-analysis, we cautiously recommend 
the inclusion of machine learning in daily 

radiology practice to improve the identifi-
cation of MGMT promoter methylation sta-
tus. However, further prospective validation 
studies are critical.

This meta-analysis revealed that machine 
learning studies utilizing conventional MRI 
sequences showed a higher diagnostic per-
formance than advanced MRI sequences in 
predicting MGMT promoter methylation 
status. One possible reason for this discrep-
ancy is that advanced MRI sequences may 
increase the number of redundant features 
that may reduce its diagnostic sensitivity. 
However, none of our included studies di-
rectly compared the diagnostic efficacy 
between advanced and conventional se-
quences, so this should be taken into con-
sideration in future studies. Studies with 
sample sizes of less than 100 patients in 
the training group had slightly higher DOR 
than assessments performed with a larger 
sample (≥100). This could be attributed to 
the fact that a small sample size might lead 
to overfitting, which is equal to confound-

ing or selection bias in machine learning 
(46–48). As a common problem in machine 
learning, overfitting leads to the machine 
learning algorithm becoming highly expe-
rienced in handling specific situations of 
the training set but lacking the capacity to 
successfully settle slightly differing cases 
except when it is trained utilizing a highly 
heterogeneous population (48, 49). Thus, to 
avoid overfitting, larger sample sizes, cross 
validation and multiple imaging methods 
should be involved in the proper training 
cohort, and a separate test cohort should 
also be considered (50, 51).

Significant heterogeneity was noted in the 
sensitivity and specificity in this meta-analy-
sis. Although some reasons for the heteroge-
neity were explained by the meta-regression 
and sensitivity analysis, further underlying 
factors remain unexplained. Huang et al. (52) 
demonstrated that different machine learn-
ing algorithms would influence the diagnos-
tic performance; however, because various 
machine learning algorithms were used in 
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Table 2. Results of subgroup analysis

Analysis
No. of  

studies
Number of 

patients

Pooled sensitivity Pooled specificity Pooled PLR Pooled NLR Pooled DOR

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI)

Overall training group 15 1432 0.85 (0.79–0.90) 0.84 (0.78–0.88) 5.3 (3.7–7.6) 0.18 (0.12–0.26) 30 (14–62)

Magnet field strength (T)

3 T 9 840 0.80 (0.76–0.84) 0.811 (0.77–0.85) 5.04 (2.73–9.3) 0.22 (0.13–0.38) 24.08 (8.45–68.60)

1.5 or 3.0T 2 246 0.76 (0.67–0.84) 0.75 (0.67–0.82) 2.89 (1.37–6.00) 0.34 (0.18–0.66) 8.62 (2.16–34.4)

NR 4 346 0.94 (0.90–0.96) 0.86 (0.80–0.90) 7.70 (2.41–24.63) 0.089 (0.04–0.23) 91.60 (14.7–570.8)

Glioma grade

HGG 7 762 0.79 (0.75–0.84) 0.79 (0.74–0.83) 4.17 (2.38–7.31) 0.23 (0.12–0.43) 20.34 (6.73–61.48)

LGG/LGG and HGG 8 670 0.88 (0.85–0.91) 0.85 (0.80–0.89) 5.99 (2.97–12.01) 0.17 (0.09–0.31) 38.35 (11.51–127.78)

Blinding to reference 
standard

Yes 10 996 0.87 (0.84–0.89) 0.83 (0.79–0.86) 5.09 (3.24–7.99) 0.18 (0.12–0.28) 31.00 (13.38–71.82)

Not explicit 5 436 0.77 (0.71–0.83) 0.78 (0.72–0.84) 4.76 (1.77–12.78) 0.21 (0.08–0.56) 24.83 (4.20–146.84)

Sample size of training 
group

≥100 4 687 0.84 (0.80–0.88) 0.81 (0.76–0.85) 4.66 (1.68–12.93) 0.19 (0.06–0.63) 24.76 (3.33–184.15)

<100 11 745 0.85 (0.80–0.88) 0.82 (0.78–0.86) 4.88 (3.13–7.62) 0.20 (0.14–0.29) 27.74 (13.18–58.39)

Sequence

CS MRI 8 910 0.90 (0.87–0.92) 0.86 (0.82–0.89) 6.39 (3.93–10.40) 0.13(0.08–0.21) 28.42 (15.13–53.38)

CS +advanced MRI 7 522 0.73 (0.68–0.79) 0.74 (0.69–0.80) 3.38 (1.96–5.81) 0.31(0.19–0.51) 54.06 (23.29–125.51)

Publication year

Before 2019 7 590 0.80 (0.75–0.84) 0.77 (0.72–0.81) 3.56 (2.18–5.81) 0.24 (0.13–0.42) 15.62 (5.82–41.91)

After 2019 8 842 0.89 (0.85–0.92) 0.87 (0.83–0.90) 7.57 (3.48–16.47) 0.16 (0.08–0.31) 53.53 (14.39–199.09)

CI, confidence interval; PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; NR, not reported; HGG, higher grade gliomas; LGG, lower grade 
gliomas; CS, conventional sequences; MRI, magnetic resonance imaging.
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our selected studies, we did not conduct a 
subgroup analysis of algorithms. Therefore, 
more studies are needed to explore the po-
tential influencing factors of machine learn-
ing in identifying MGMT promoter methyla-
tion status in gliomas.

 It is worth noting that this meta-anal-
ysis has a few limitations. First, all of the 
included studies were retrospective; thus, 
prospectively designed studies are needed 
to validate these findings. Second, obvious 
heterogeneity was observed in the sensitiv-
ity and specificity. To explain the influencing 
factors of the heterogeneity, we performed 
subgroup analysis, meta-regression, and 
sensitivity analysis. Third, ten of the included 
studies did not have a validation set, which 
might cause false high-performance results. 
Fourth, although five of our included stud-
ies simultaneously predicted the status of 
IDH mutation and MGMT methylation (21, 
25, 31–33), all included studies graded glio-
mas without using the criteria of the WHO  
classification of 2016, which were based on 
genetic biomarkers such as IDH mutation 
and 1p/19q codeletion. In addition, only 
one study had a clinical integrated model 
(21), which is also a limitation because the 
inclusion of clinical characteristics might be 
conducive to improving diagnostic perfor-
mance.

In conclusion, our meta-analysis demon-
strated that machine learning is a promis-
ing and credible method to predict MGMT 
promoter methylation status in glioma and 
showed a higher performance than non-ma-
chine learning methods. However, more pro-
spective and large sample size studies are 
required to verify the diagnostic efficacy and 
explore the most suitable MRI sequences 
and machine learning algorithms.
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Supplementary Material 1. Result of sensitivity analysis.

Supplementary Material 2
With a systematic literature search, we included four non-machine learning studies using perfusion sequence studies, and the sensitivity and specificity 
of the individual studies ranged from 56.3% to 84.2% and 75.0% to 85.7%, respectively. Six non-machine learning studies using ADC values were found, 
but among them, only two studies demonstrated that the ADC value was significantly different between MGMT-methylated and unmethylated gliomas 
(sensitivity ranged from 81% to 84% and specificity 82% to 91%). Thus, we only performed a systematic comparison in machine learning studies and 
non-machine learning studies using perfusion sequences in predicting MGMT status. The results are shown in the following table.

Method Pooled sensitivity Pooled specificity Pooled AUC

Machine learning studies 0.85 (0. 79-0.90) 0.84 (0.78-0.88) 0.91 (0.88-0.93)

Non-machine learning studies using perfusion sequences 0.74 (0.64-0.82) 0.81 (0.71-0.87) 0.84 (0.81-0.87)


